perm filename KK.PRF[S79,JMC] blob sn#437476 filedate 1979-04-26 generic text, type C, neo UTF8
COMMENT ⊗   VALID 00002 PAGES
C REC  PAGE   DESCRIPTION
C00001 00001
C00002 00002
C00020 ENDMK
C⊗;

*****ASSUME A(RW,w,SP,0)∧k=K(w);

1 A(RW,w,SP,0)∧k=K(w)  (1)

*****∧E ↑:#1;

2 A(RW,w,SP,0)  (1)

*****∧E ↑↑:#2;

3 k=K(w)  (1)

*****ASSUME Qs(k);

4 Qs(k)  (4)

*****∀E QS k;

5 Qs(k)≡(OK(k)∧∃k1.(OK(k1)∧(s(k)=s(k1)∧¬(k=k1))))  

*****TAUT OK(k) 4:5;

6 OK(k)  (4)

*****TAUT ∃k1.(OK(k1)∧(s(k)=s(k1)∧¬(k=k1))) 4:5;

7 ∃k1.(OK(k1)∧(s(k)=s(k1)∧¬(k=k1)))  (4)

*****∃E ↑ k1;

8 OK(k1)∧(s(k)=s(k1)∧¬(k=k1))  (8)

*****TAUTEQ A(RW,w,SP,0)∧(OK(k1)∧s(k)=s(k1)) 2,8;

9 A(RW,w,SP,0)∧(OK(k1)∧s(k)=s(k1))  (1 8)

*****SUBST 3 IN ↑;

10 A(RW,w,SP,0)∧(OK(k1)∧s(K(w))=s(k1))  (1 8)

*****∀E INIT3 w,k1;

11 (A(RW,w,SP,0)∧(OK(k1)∧s(K(w))=s(k1)))⊃∃w1.(A(w,w1,S,0)∧k1=K(w1))  

*****⊃E ↑↑,↑;

12 ∃w1.(A(w,w1,S,0)∧k1=K(w1))  (1 8)

*****∃E ↑ w1;

13 A(w,w1,S,0)∧k1=K(w1)  (13)

*****TAUTEQ A(w,w1,S,0)∧¬(K(w)=K(w1)) 3,8,13;

14 A(w,w1,S,0)∧¬(K(w)=K(w1))  (1 8 13)

*****∃I ↑ w1 ;

15 ∃w1.(A(w,w1,S,0)∧¬(K(w)=K(w1)))  (1 4)

*****∀E BS w;

16 Bs(w)≡∃w1.(A(w,w1,S,0)∧¬(K(w)=K(w1)))  

*****TAUT Bs(w) 15:16;

17 Bs(w)  (1 4)

*****⊃I 4⊃↑;

18 Qs(k)⊃Bs(w)  (1)

*****ASSUME Bs(w);

19 Bs(w)  (19)

*****TAUT ∃w1.(A(w,w1,S,0)∧¬(K(w)=K(w1))) 16,19;

20 ∃w1.(A(w,w1,S,0)∧¬(K(w)=K(w1)))  (19)

*****∃E ↑ w1;

21 A(w,w1,S,0)∧¬(K(w)=K(w1))  (21)

*****∀E OK w1;

22 OK(K(w1))  

*****∀E INIT1 w,w1;

23 (A(RW,w,SP,0)∧A(w,w1,S,0))⊃s(K(w))=s(K(w1))  

*****TAUTEQ s(K(w))=s(K(w1)) 2,21:23;

24 s(K(w))=s(K(w1))  (1 21)

*****SUBSTR 3 IN ↑;

25 s(k)=s(K(w1))  (1 21)

*****∧E 21:#2;

26 ¬(K(w)=K(w1))  (21)

*****SUBSTR 3 IN ↑;

27 ¬(k=K(w1))  (1 21)

*****∧I (22 (25 27));

28 OK(K(w1))∧(s(k)=s(K(w1))∧¬(k=K(w1)))  (1 21)

*****∃I ↑ K(w1)←k1;

29 ∃k1.(OK(k1)∧(s(k)=s(k1)∧¬(k=k1)))  (1 19)

*****∀E OK w;

30 OK(K(w))  

*****SUBSTR 3 IN ↑;

31 OK(k)  (1)

*****∧I (29 31);

32 ∃k1.(OK(k1)∧(s(k)=s(k1)∧¬(k=k1)))∧OK(k)  (1 19)

*****TAUT Qs(k) 5,32;

33 Qs(k)  (1 19)

*****⊃I 19⊃↑;

34 Bs(w)⊃Qs(k)  (1)

*****≡I 18,↑;

35 Qs(k)≡Bs(w)  (1)

*****⊃I 1⊃↑;

36 (A(RW,w,SP,0)∧k=K(w))⊃(Qs(k)≡Bs(w))  

*****∀I ↑ w k;

37 ∀w k.((A(RW,w,SP,0)∧k=K(w))⊃(Qs(k)≡Bs(w)))  

*****ASSUME Qp(k);

38 Qp(k)  (38)

*****∀E QP k;

39 Qp(k)≡(OK(k)∧∃k1.(OK(k1)∧(p(k)=p(k1)∧¬(k=k1))))  

*****TAUT OK(k) 38:39;

40 OK(k)  (38)

*****TAUT ∃k1.(OK(k1)∧(p(k)=p(k1)∧¬(k=k1))) 38:39;

41 ∃k1.(OK(k1)∧(p(k)=p(k1)∧¬(k=k1)))  (38)

*****∃E ↑ k1;

42 OK(k1)∧(p(k)=p(k1)∧¬(k=k1))  (42)

*****TAUTEQ A(RW,w,SP,0)∧(OK(k1)∧p(k)=p(k1)) 2,42;

43 A(RW,w,SP,0)∧(OK(k1)∧p(k)=p(k1))  (1 42)

*****SUBST 3 IN ↑;

44 A(RW,w,SP,0)∧(OK(k1)∧p(K(w))=p(k1))  (1 42)

*****∀E INIT4 w,k1;

45 (A(RW,w,SP,0)∧(OK(k1)∧p(K(w))=p(k1)))⊃∃w1.(A(w,w1,P,0)∧k1=K(w1))  

*****⊃E ↑↑,↑;

46 ∃w1.(A(w,w1,P,0)∧k1=K(w1))  (1 42)

*****∃E ↑ w1;

47 A(w,w1,P,0)∧k1=K(w1)  (47)

*****TAUTEQ A(w,w1,P,0)∧¬(K(w)=K(w1)) 3,42,47;

48 A(w,w1,P,0)∧¬(K(w)=K(w1))  (1 42 47)

*****∃I ↑ w1 ;

49 ∃w1.(A(w,w1,P,0)∧¬(K(w)=K(w1)))  (1 38)

*****∀E BP w;

50 Bp(w)≡∃w1.(A(w,w1,P,0)∧¬(K(w)=K(w1)))  

*****TAUT Bp(w) 49:50;

51 Bp(w)  (1 38)

*****⊃I 38⊃↑;

52 Qp(k)⊃Bp(w)  (1)

*****ASSUME Bp(w);

53 Bp(w)  (53)

*****TAUT ∃w1.(A(w,w1,P,0)∧¬(K(w)=K(w1))) 50,53;

54 ∃w1.(A(w,w1,P,0)∧¬(K(w)=K(w1)))  (53)

*****∃E ↑ w1;

55 A(w,w1,P,0)∧¬(K(w)=K(w1))  (55)

*****∀E INIT2 w,w1;

56 (A(RW,w,SP,0)∧A(w,w1,P,0))⊃p(K(w))=p(K(w1))  

*****TAUTEQ p(K(w))=p(K(w1)) 2,55:56;

57 p(K(w))=p(K(w1))  (1 55)

*****∧E ↑↑↑:#2;

58 ¬(K(w)=K(w1))  (55)

*****∧I ((22 (57 58)));

59 OK(K(w1))∧(p(K(w))=p(K(w1))∧¬(K(w)=K(w1)))  (1 55)

*****SUBSTR 3 IN ↑;

60 OK(K(w1))∧(p(k)=p(K(w1))∧¬(k=K(w1)))  (1 55)

*****∃I ↑ K(w1)←k1;

61 ∃k1.(OK(k1)∧(p(k)=p(k1)∧¬(k=k1)))  (1 53)

*****∧I ((31 61));

62 OK(k)∧∃k1.(OK(k1)∧(p(k)=p(k1)∧¬(k=k1)))  (1 53)

*****TAUT Qp(k) 39,62;

63 Qp(k)  (1 53)

*****⊃I 53⊃↑;

64 Bp(w)⊃Qp(k)  (1)

*****≡I 52,↑;

65 Qp(k)≡Bp(w)  (1)

*****⊃I 1⊃↑;

66 (A(RW,w,SP,0)∧k=K(w))⊃(Qp(k)≡Bp(w))  

*****∀I ↑ w k;

67 ∀w k.((A(RW,w,SP,0)∧k=K(w))⊃(Qp(k)≡Bp(w)))  

*****ASSUME Q1(k);

68 Q1(k)  (68)

*****ASSUME A(w,w1,S,0);

69 A(w,w1,S,0)  (69)

*****TAUT s(K(w))=s(K(w1)) 2,23,69;

70 s(K(w))=s(K(w1))  (1 69)

*****SUBSTR 3 IN ↑;

71 s(k)=s(K(w1))  (1 69)

*****∀E Q1 k;

72 Q1(k)≡(OK(k)∧∀k1.((OK(k1)∧s(k)=s(k1))⊃Qp(k1)))  

*****TAUT OK(k)∧∀k1.((OK(k1)∧s(k)=s(k1))⊃Qp(k1)) 68,72;

73 OK(k)∧∀k1.((OK(k1)∧s(k)=s(k1))⊃Qp(k1))  (68)

*****∧E ↑:#2;

74 ∀k1.((OK(k1)∧s(k)=s(k1))⊃Qp(k1))  (68)

*****∀E ↑ K(w1);

75 (OK(K(w1))∧s(k)=s(K(w1)))⊃Qp(K(w1))  (68)

*****TAUT Qp(K(w1)) 22,71,75;

76 Qp(K(w1))  (1 68 69)

*****∀E SP w,w1,0;

77 (A(w,w1,S,0)∨A(w,w1,P,0))⊃A(w,w1,SP,0)  

*****∀E AT RW,w,w1,SP,0;

78 (A(RW,w,SP,0)∧A(w,w1,SP,0))⊃A(RW,w1,SP,0)  

*****∀E 67 w1,K(w1);

79 (A(RW,w1,SP,0)∧K(w1)=K(w1))⊃(Qp(K(w1))≡Bp(w1))  

*****TAUTEQ Bp(w1) 2,69,76:79;

80 Bp(w1)  (1 68 69)

*****⊃I 69⊃↑;

81 A(w,w1,S,0)⊃Bp(w1)  (1 68)

*****∀I ↑ w1;

82 ∀w1.(A(w,w1,S,0)⊃Bp(w1))  (1 68)

*****∀E B1 w;

83 B1(w)≡∀w1.(A(w,w1,S,0)⊃Bp(w1))  

*****TAUT B1(w) 82:83;

84 B1(w)  (1 68)

*****⊃I 68⊃↑;

85 Q1(k)⊃B1(w)  (1)

*****ASSUME B1(w);

86 B1(w)  (86)

*****ASSUME OK(k1)∧s(k)=s(k1);

87 OK(k1)∧s(k)=s(k1)  (87)

*****∀E INIT3 w,k1;

88 (A(RW,w,SP,0)∧(OK(k1)∧s(K(w))=s(k1)))⊃∃w1.(A(w,w1,S,0)∧k1=K(w1))  

*****SUBSTR 3 IN ↑;

89 (A(RW,w,SP,0)∧(OK(k1)∧s(k)=s(k1)))⊃∃w1.(A(w,w1,S,0)∧k1=K(w1))  (1)

*****TAUT ∃w1.(A(w,w1,S,0)∧k1=K(w1)) 2,87,89;

90 ∃w1.(A(w,w1,S,0)∧k1=K(w1))  (1 87)

*****∃E ↑ w1;

91 A(w,w1,S,0)∧k1=K(w1)  (91)

*****TAUT ∀w1.(A(w,w1,S,0)⊃Bp(w1)) 83,86;

92 ∀w1.(A(w,w1,S,0)⊃Bp(w1))  (86)

*****∀E ↑ w1;

93 A(w,w1,S,0)⊃Bp(w1)  (86)

*****TAUTEQ Qp(K(w1)) 2,77:79,91,93;

94 Qp(K(w1))  (1 86 91)

*****∧E 91:#2;

95 k1=K(w1)  (91)

*****SUBSTR ↑ IN ↑↑;

96 Qp(k1)  (1 86 87)

*****⊃I 87⊃↑;

97 (OK(k1)∧s(k)=s(k1))⊃Qp(k1)  (1 86)

*****∀I ↑ k1;

98 ∀k1.((OK(k1)∧s(k)=s(k1))⊃Qp(k1))  (1 86)

*****TAUT Q1(k) 31,72,98;

99 Q1(k)  (1 86)

*****⊃I 86⊃↑;

100 B1(w)⊃Q1(k)  (1)

*****≡I 85,↑;

101 Q1(k)≡B1(w)  (1)

*****⊃I 1⊃↑;

102 (A(RW,w,SP,0)∧k=K(w))⊃(Q1(k)≡B1(w))  

*****∀I ↑ w k;

103 ∀w k.((A(RW,w,SP,0)∧k=K(w))⊃(Q1(k)≡B1(w)))  

*****∀E R1 k;

104 R1(k)≡(Qs(k)∧Q1(k))  

*****∀E C1 w;

105 C1(w)≡(Bs(w)∧B1(w))  

*****TAUT R1(k)≡C1(w) 35,101,104:105;

106 R1(k)≡C1(w)  (1)

*****⊃I 1⊃↑;

107 (A(RW,w,SP,0)∧k=K(w))⊃(R1(k)≡C1(w))  

*****∀I ↑ w k;

108 ∀w k.((A(RW,w,SP,0)∧k=K(w))⊃(R1(k)≡C1(w)))  

*****ASSUME C2(RW);

109 C2(RW)  (109)

*****∀E C2 RW;

110 C2(RW)≡(C1(RW)∧B2(RW))  

*****∀E AR RW,SP,0;

111 A(RW,RW,SP,0)  

*****∀E 108 RW,k0;

112 (A(RW,RW,SP,0)∧k0=K(RW))⊃(R1(k0)≡C1(RW))  

*****TAUT R1(k0) RW,109:112;

113 R1(k0)  (109)

*****TAUT B2(RW) 109:110;

114 B2(RW)  (109)

*****ASSUME R1(k)∧p(k0)=p(k);

115 R1(k)∧p(k0)=p(k)  (115)

*****TAUT OK(k)∧p(k0)=p(k) 5,104,115;

116 OK(k)∧p(k0)=p(k)  (115)

*****SUBST RW IN ↑;

117 OK(k)∧p(K(RW))=p(k)  (115)

*****∀E INIT4 RW,k;

118 (A(RW,RW,SP,0)∧(OK(k)∧p(K(RW))=p(k)))⊃∃w1.(A(RW,w1,P,0)∧k=K(w1))  

*****TAUT ∃w1.(A(RW,w1,P,0)∧k=K(w1)) 111,117:118;

119 ∃w1.(A(RW,w1,P,0)∧k=K(w1))  (115)

*****∃E ↑ w1;

120 A(RW,w1,P,0)∧k=K(w1)  (120)

*****∀E 108 w1,k;

121 (A(RW,w1,SP,0)∧k=K(w1))⊃(R1(k)≡C1(w1))  

*****∀E SP RW,w1,0;

122 (A(RW,w1,S,0)∨A(RW,w1,P,0))⊃A(RW,w1,SP,0)  

*****TAUT C1(w1) 115,120:122;

123 C1(w1)  (115 120)

*****∀E LP RW,w1;

124 A(RW,RW,SP,0)⊃(A(RW,w1,P,1)≡(A(RW,w1,P,0)∧C1(w1)))  

*****TAUT A(RW,w1,P,1) 111,120,123:124;

125 A(RW,w1,P,1)  (115 120)

*****∀E B2 RW;

126 B2(RW)≡∀w1.(A(RW,w1,P,1)⊃K(RW)=K(w1))  

*****TAUT ∀w1.(A(RW,w1,P,1)⊃K(RW)=K(w1)) 114,126;

127 ∀w1.(A(RW,w1,P,1)⊃K(RW)=K(w1))  (109)

*****∀E ↑ w1;

128 A(RW,w1,P,1)⊃K(RW)=K(w1)  (109)

*****TAUTEQ k0=k RW,120,125,128;

129 k0=k  (109 115)

*****⊃I 115⊃↑;

130 (R1(k)∧p(k0)=p(k))⊃k0=k  (109)

*****∀I ↑ k←k1;

131 ∀k1.((R1(k1)∧p(k0)=p(k1))⊃k0=k1)  (109)

*****∀E Q2 k0;

132 Q2(k0)≡(OK(k0)∧∀k1.((R1(k1)∧p(k0)=p(k1))⊃k0=k1))  

*****∀E OK RW;

133 OK(K(RW))  

*****SUBSTR RW IN ↑;

134 OK(k0)  

*****TAUT Q2(k0) 131:132,134;

135 Q2(k0)  (109)

*****∧I (135 113);

136 Q2(k0)∧R1(k0)  (109)

*****∀E R2 k0;

137 R2(k0)≡(R1(k0)∧Q2(k0))  

*****TAUT R2(k0) 136:137;

138 R2(k0)  (109)

*****⊃I 109⊃↑;

139 C2(RW)⊃R2(k0)  

*****∀E C1 RW;

140 C1(RW)≡(Bs(RW)∧B1(RW))  

*****∀E C2 RW;

141 C2(RW)≡(C1(RW)∧B2(RW))  

*****TAUT R2(k0) PK,NSK,SKNPK,139:141;

142 R2(k0)  

*****ASSUME R2(k);

143 R2(k)  (143)

*****∀E R2 k;

144 R2(k)≡(R1(k)∧Q2(k))  

*****TAUT R1(k) 143:144;

145 R1(k)  (143)

*****TAUT Q2(k) 143:144;

146 Q2(k)  (143)

*****TAUT C1(w) 106,145;

147 C1(w)  (1 143)

*****ASSUME A(w,w1,P,1);

148 A(w,w1,P,1)  (148)

*****∀E LP w,w1;

149 A(RW,w,SP,0)⊃(A(w,w1,P,1)≡(A(w,w1,P,0)∧C1(w1)))  

*****TAUT C1(w1) 1,148:149;

150 C1(w1)  (1 148)

*****TAUT A(w,w1,P,0) 1,148:149;

151 A(w,w1,P,0)  (1 148)

*****TAUT p(K(w))=p(K(w1)) 2,56,151;

152 p(K(w))=p(K(w1))  (1 148)

*****∀E 108 w1,K(w1);

153 (A(RW,w1,SP,0)∧K(w1)=K(w1))⊃(R1(K(w1))≡C1(w1))  

*****TAUTEQ R1(K(w1)) 1,77:78,150:151,153;

154 R1(K(w1))  (1 148)

*****∀E Q2 k;

155 Q2(k)≡(OK(k)∧∀k1.((R1(k1)∧p(k)=p(k1))⊃k=k1))  

*****TAUT OK(k)∧∀k1.((R1(k1)∧p(k)=p(k1))⊃k=k1) 146,155;

156 OK(k)∧∀k1.((R1(k1)∧p(k)=p(k1))⊃k=k1)  (143)

*****∧E ↑:#2;

157 ∀k1.((R1(k1)∧p(k)=p(k1))⊃k=k1)  (143)

*****∀E ↑ K(w1);

158 (R1(K(w1))∧p(k)=p(K(w1)))⊃k=K(w1)  (143)

*****SUBST 3 IN ↑;

159 (R1(K(w1))∧p(K(w))=p(K(w1)))⊃K(w)=K(w1)  (1 143)

*****TAUTEQ K(w)=K(w1) 152,154,159;

160 K(w)=K(w1)  (1 143 148)

*****⊃I 148⊃↑;

161 A(w,w1,P,1)⊃K(w)=K(w1)  (1 143)

*****∀I ↑ w1;

162 ∀w1.(A(w,w1,P,1)⊃K(w)=K(w1))  (1 143)

*****∀E C2 w;

163 C2(w)≡(C1(w)∧B2(w))  

*****∀E B2 w;

164 B2(w)≡∀w1.(A(w,w1,P,1)⊃K(w)=K(w1))  

*****TAUT C2(w) 147,162:164;

165 C2(w)  (1 143)

*****⊃I 143⊃↑;

166 R2(k)⊃C2(w)  (1)

*****⊃I 1⊃↑;

167 (A(RW,w,SP,0)∧k=K(w))⊃(R2(k)⊃C2(w))  

*****∀I ↑ w k;

168 ∀w k.((A(RW,w,SP,0)∧k=K(w))⊃(R2(k)⊃C2(w)))  

*****ASSUME R2(k1)∧s(k0)=s(k1);

169 R2(k1)∧s(k0)=s(k1)  (169)

*****∀E R2 k1;

170 R2(k1)≡(R1(k1)∧Q2(k1))  

*****∀E Q2 k1;

171 Q2(k1)≡(OK(k1)∧∀k.((R1(k)∧p(k1)=p(k))⊃k1=k))  

*****TAUT OK(k1)∧s(k0)=s(k1) 169:171;

172 OK(k1)∧s(k0)=s(k1)  (169)

*****∀E INIT3 RW,k1;

173 (A(RW,RW,SP,0)∧(OK(k1)∧s(K(RW))=s(k1)))⊃∃w1.(A(RW,w1,S,0)∧k1=K(w1))  

*****SUBST RW IN ↑↑;

174 OK(k1)∧s(K(RW))=s(k1)  (169)

*****TAUT ∃w1.(A(RW,w1,S,0)∧k1=K(w1)) 111,173:174;

175 ∃w1.(A(RW,w1,S,0)∧k1=K(w1))  (169)

*****∃E ↑ w1;

176 A(RW,w1,S,0)∧k1=K(w1)  (176)

*****∀E 168 w1,k1;

177 (A(RW,w1,SP,0)∧k1=K(w1))⊃(R2(k1)⊃C2(w1))  

*****∀E LS RW,w1;

178 A(RW,RW,SP,0)⊃(A(RW,w1,S,2)≡(A(RW,w1,S,0)∧C2(w1)))  

*****∀E SK w1;

179 A(RW,w1,S,2)⊃K(RW)=K(w1)  

*****TAUTEQ k0=k1 RW,111,122,169,176:179;

180 k0=k1  (169)

*****⊃I 169⊃↑;

181 (R2(k1)∧s(k0)=s(k1))⊃k0=k1  

*****∀I ↑ k1;

182 ∀k1.((R2(k1)∧s(k0)=s(k1))⊃k0=k1)  

*****∀E Q3 k0;

183 Q3(k0)≡(OK(k0)∧∀k1.((R2(k1)∧s(k0)=s(k1))⊃k0=k1))  

*****TAUT Q3(k0) 134,182:183;

184 Q3(k0)  

*****∀E R3 k0;

185 R3(k0)≡(R2(k0)∧Q3(k0))  

*****TAUT R3(k0) 142,184:185;

186 R3(k0)